Visualization of weights["h1"]
https://github.com/dalek7/DNN/blob/master/tensorflow/autoencoder/
2017년 4월 6일 목요일
2017년 3월 2일 목요일
Clustering by fast search and find of density peaks
Clustering by fast search and find of density peaks
by Alex Rodriguez, Alessandro Laio
http://comments.sciencemag.org/content/10.1126/science.1242072
http://conference.mipt.ru/img/conference/material-design-2014/talks/Laio-talk.pdf
by Alex Rodriguez, Alessandro Laio
http://comments.sciencemag.org/content/10.1126/science.1242072
http://conference.mipt.ru/img/conference/material-design-2014/talks/Laio-talk.pdf
2016년 2월 10일 수요일
Paper to read
M. Li, A.I. Mourikis, “3-D Motion Estimation and Online Temporal Calibration for Camera-IMU Systems'' Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6-10 2013, pp. 5689-5696.
http://www.ee.ucr.edu/~mourikis/papers/Li2013ICRA.pdf
2014년 9월 24일 수요일
IROS workshop paper
IROS workshop paper :
Pointcloud-based Analysis of the Surgeon’s Hand for Natural Control of Robotic Surgical Graspers
http://web.stanford.edu/~inisky/Motor_Control_RAMIS_workshop.htm
http://web.stanford.edu/~inisky/Motor_Control_RAMIS_workshop_files/RAMIS_Motor_Control_Book_of_Abstracts_FINAL%20v2.pdf
http://robot.kaist.ac.kr/paper/view.php?n=379
2014년 4월 17일 목요일
2014년 1월 28일 화요일
2014년 1월 24일 금요일
2013년 12월 19일 목요일
PCA in PCL
/////////////////////////////////////////////////////////////////////////////////////////
template
pcl::PCA
{
if(!Base::initCompute ())
{
PCL_THROW_EXCEPTION (InitFailedException, "[pcl::PCA::initCompute] failed");
return (false);
}
if(indices_->size () < 3)
{
PCL_THROW_EXCEPTION (InitFailedException, "[pcl::PCA::initCompute] number of points < 3");
return (false);
}
// Compute mean
mean_ = Eigen::Vector4f::Zero ();
compute3DCentroid (*input_, *indices_, mean_);
// Compute demeanished cloud
Eigen::MatrixXf cloud_demean;
demeanPointCloud (*input_, *indices_, mean_, cloud_demean);
assert (cloud_demean.cols () == int (indices_->size ()));
// Compute the product cloud_demean * cloud_demean^T
Eigen::Matrix3f alpha = cloud_demean.topRows<3> () * cloud_demean.topRows<3> ().transpose ();3>3>
// Compute eigen vectors and values
Eigen::SelfAdjointEigenSolver
// Organize eigenvectors and eigenvalues in ascendent order
for (int i = 0; i < 3; ++i)
{
eigenvalues_[i] = evd.eigenvalues () [2-i];
eigenvectors_.col (i) = evd.eigenvectors ().col (2-i);
}
// If not basis only then compute the coefficients
if (!basis_only_)
coefficients_ = eigenvectors_.transpose() * cloud_demean.topRows<3> ();3>
compute_done_ = true;
return (true);
}
from /opt/ros/fuerte/include/pcl-1.5/pcl/common/impl/pca.hpp
2013년 12월 12일 목요일
Z-Y-X Euler Angles
Z-Y-X Euler Angles
Z-Y-X Euler Angles (or X-Y-Z fixed angles)
Rx'y'z' (a,b,c) =
[ cos(a)*cos(b), cos(a)*sin(b)*sin(c) - cos(c)*sin(a), sin(a)*sin(c) + cos(a)*cos(c)*sin(b)]
[ cos(b)*sin(a), cos(a)*cos(c) + sin(a)*sin(b)*sin(c), cos(c)*sin(a)*sin(b) - cos(a)*sin(c)]
[ -sin(b), cos(b)*sin(c), cos(b)*cos(c)]
X-Y-Z Euler Angles
Rz'y'x' (a,b,c) =
[ cos(b)*cos(c), -cos(b)*sin(c), sin(b)]
[ cos(a)*sin(c) + cos(c)*sin(a)*sin(b), cos(a)*cos(c) - sin(a)*sin(b)*sin(c), -cos(b)*sin(a)]
[ sin(a)*sin(c) - cos(a)*cos(c)*sin(b), cos(c)*sin(a) + cos(a)*sin(b)*sin(c), cos(a)*cos(b)]
Z-Y-X Euler Angles (or X-Y-Z fixed angles)
Rx'y'z' (a,b,c) =
[ cos(a)*cos(b), cos(a)*sin(b)*sin(c) - cos(c)*sin(a), sin(a)*sin(c) + cos(a)*cos(c)*sin(b)]
[ cos(b)*sin(a), cos(a)*cos(c) + sin(a)*sin(b)*sin(c), cos(c)*sin(a)*sin(b) - cos(a)*sin(c)]
[ -sin(b), cos(b)*sin(c), cos(b)*cos(c)]
X-Y-Z Euler Angles
Rz'y'x' (a,b,c) =
[ cos(b)*cos(c), -cos(b)*sin(c), sin(b)]
[ cos(a)*sin(c) + cos(c)*sin(a)*sin(b), cos(a)*cos(c) - sin(a)*sin(b)*sin(c), -cos(b)*sin(a)]
[ sin(a)*sin(c) - cos(a)*cos(c)*sin(b), cos(c)*sin(a) + cos(a)*sin(b)*sin(c), cos(a)*cos(b)]
Rz'y'x' (c,b,a) =
[ cos(a)*cos(b), -cos(b)*sin(a), sin(b)]
[ cos(c)*sin(a) + cos(a)*sin(b)*sin(c), cos(a)*cos(c) - sin(a)*sin(b)*sin(c), -cos(b)*sin(c)]
[ sin(a)*sin(c) - cos(a)*cos(c)*sin(b), cos(a)*sin(c) + cos(c)*sin(a)*sin(b), cos(b)*cos(c)]
[ cos(a)*cos(b), -cos(b)*sin(a), sin(b)]
[ cos(c)*sin(a) + cos(a)*sin(b)*sin(c), cos(a)*cos(c) - sin(a)*sin(b)*sin(c), -cos(b)*sin(c)]
[ sin(a)*sin(c) - cos(a)*cos(c)*sin(b), cos(a)*sin(c) + cos(c)*sin(a)*sin(b), cos(b)*cos(c)]
2013년 10월 27일 일요일
ARCBALL
회전축과 회전각도를 결정하여 회전 Quaternion 을 구해냄.
마우스 입력으로 3차원 회전축과 각도를 어떻게 결정하는지 알면 끝.
현재점과 anchor 점을 결정할 때 2D 입력을 spherical mapping을 사용하여 3D Vector로 mapping.
본 논문 :
ARCBALL: a user interface for specifying three-dimensional orientation using a mousehttp://dl.acm.org/citation.cfm?id=155312
2013년 8월 26일 월요일
Eigenvalues of rotation matrix : 0~180 degrees
Eigenvalue의 의미를 보여주는 그래프. y축은 imaginary axis.
추가 1)
When an n×n rotation matrix, Q, does not include −1 as an eigenvalue, so that none of the planar rotations of which it is composed are 180° rotations, then Q+I is an invertible matrix. Most rotation matrices fit this description.
2013년 8월 8일 목요일
sensor_msgs/JointState - ROS
Raw message definition:
string[] name
float64[] position
float64[] velocity
float64[] effort
# This is a message that holds data to describe the state of a set of torque controlled joints.
#
# The state of each joint (revolute or prismatic) is defined by:
# * the position of the joint (rad or m),
# * the velocity of the joint (rad/s or m/s) and
# * the effort that is applied in the joint (Nm or N).
#
# Each joint is uniquely identified by its name
# The header specifies the time at which the joint states were recorded. All the joint states
# in one message have to be recorded at the same time.
#
# This message consists of a multiple arrays, one for each part of the joint state.
# The goal is to make each of the fields optional. When e.g. your joints have no
# effort associated with them, you can leave the effort array empty.
#
# All arrays in this message should have the same size, or be empty.
# This is the only way to uniquely associate the joint name with the correct
# states.
from http://www.ros.org/doc/api/sensor_msgs/html/msg/JointState.html
2013년 6월 20일 목요일
Typical orbits
회전체 모드해석 수업때 이종원 교수님 강의 중 나온 내용.
Matlab으로 그려본 것.
그림만 봐도 spectrum 해석하기 이전에 분석할 수 있음.
Hypocycloid
(more information : http://mathworld.wolfram.com/Hypocycloid.html)
Hypotrochoid
Epitrochoid
Epitrochoid 와 Hypotrochoid에 대한 추가 문서 : http://www.durangobill.com/Trochoids.html
2012년 12월 30일 일요일
2012년 1월 27일 금요일
Manipulatory and ambulatory space
Lederman, Klatzkey, Collins, Wardell (1987) made a distinction between manipulatory and ambulatory space, the former within reach of the hands and the latter requiring exploration by movements of the body.
Lederman, S. J., Klatzky, R. L., Collins, A. and Wardell, J. Exploring environments by hand or foot: Time-based heuristics for encoding distance in movement space. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 4 (1987), 606-614.
2011년 8월 8일 월요일
Surround Haptics
PRESS RELEASE: DISNEY RESEARCH PITTSBURGH DEMONSTRATES TACTILE TECH GUARANTEED TO SEND SHIVERS DOWN YOUR SPINE
https://www.cmu.edu/news/stories/archives/2011/august/aug8_disneytactiletech.html
2011년 6월 28일 화요일
Dexterity
오늘 Graphics Lab 세미나 Nancy 교수 발표에서 듣게 된 말.
Dexterity the ability to find a motor solution for any external situation, that is, to adequately solve any emerging motor problem correctly, quickly, rationally, and resourcefully
원 정의는 아래 reference
N. A. Bernstein. On dexterity and its development. In M. L. Latash and M. T. Turvey, editors, Dexterity and its Development. Lawrence Erlbaum Associates, New Jersey, 1996.
Dexterity the ability to find a motor solution for any external situation, that is, to adequately solve any emerging motor problem correctly, quickly, rationally, and resourcefully
원 정의는 아래 reference
N. A. Bernstein. On dexterity and its development. In M. L. Latash and M. T. Turvey, editors, Dexterity and its Development. Lawrence Erlbaum Associates, New Jersey, 1996.
피드 구독하기:
글 (Atom)